Results for category "Science Fiction Blog"

22 Articles

What’s Wrong With The Fermi Paradox

Follow Dean:

FacebooktwitterlinkedinrssinstagramFacebooktwitterlinkedinrssinstagram

In a 1950 discussion with colleagues on the subject of the potential existence of extraterrestrial life, famed physicist Enrico Fermi asked, “Where are they?” Uttering those three words, Fermi forever tied his name to the issue as it came to be known as the Fermi Paradox.

fermi paradoxHis question is reasonable.

The Fermi Paradox lies in the contradiction between high estimates of the potential numbers of extraterrestrial civilizations, and the lack of evidence for or contact with said civilizations.

Considering the billions of years of galactic history predating humanity’s arrival and taking Earth’s life-development timeline as average, the age of the universe and its vast number of stars suggests extraterrestrial life should be common. Even using conservative numbers for the percentage of stars with planets and the percentage of those that will host life and so on, the number of technological galactic civilizations could easily be in the millions.

So, withstanding the multitude of UFO sightings, where’s the hard evidence that would surely be visible in the form of spacecraft or probes if the galaxy teamed with life.

There are several gaps in this logic, one being that all UFO sightings are either hoaxes or misidentified natural phenomenon. The US Air Force’s Project Blue Book found a small percentage “inexplicable by contemporary technology.” If even one sighting were real, the paradox evaporates.

However, for argument’s sake, let’s say every UFO sighting in history has been terrestrial in origin. What are the other holes in the argument?

One is the Zoo Hypothesis. Essentially it postulates that earth-space is a sanctuary. Much like a wildlife refuge, it is to be left unmolested and unaltered by external cultures and technologies, allowed to develop on its own course and of its own volition. Under this hypothesis, alien ships could be observing us now. As long as they remain undetected, they could pursue their anthropologic aspirations utilizing their advanced technology.

Fermi’s paradox evaporates at the very idea that aliens could inhabit local space undetected by our current technology.

Undetectable spaceships? Sounds like paranoid conspiracy theorist fodder. Maybe not when you consider how close we are to realizing that ability.

Humans, barely a century from our first forays into the air and mere decades since first breaching our atmosphere into local space, are already pondering invisibility cloaks rendered through the employment of metamaterials. While that century’s hundred years seems like a long time on a human timescale, it is less than a blink of the eye on a geologic timescale, even less on an astronomic timescale.

Another paradoxical hole arises when we review the assumption that we would see an uncloaked ship.

Most of us grew up in the space and information ages. We believe we know what’s out there and surely must know what is in our solar system. In this time-lapse computer animation produced by Scott Manley, we humans look like cavemen shining our light of discovery upon our solar neighborhood. Watch the video. You’ll be amazed at how little we knew about our solar neighborhood a few years ago, much less in Fermi’s time.


The rendered asteroids are mostly 100 meters or larger. By the end of the animation, there are roughly half a million asteroids. Current scientific estimates place the number of asteroids 100 meters or larger at half a billion. That’s billion with a B. Meaning there are a thousand times more football-field-sized asteroids than have been found to date.

In other words, in 2014 scientists believe roughly 499.5 million sports-arena-sized asteroids remain undiscovered in our neck of the solar system. 

In that light, how much water does Fermi’s 1950 assertion hold. Even 64 years later, we can’t say there aren’t (potentially cloaked and potentially smaller than a football field) alien ships visiting.

All things considered, it doesn’t seem like much of a paradox.

Digiprove sealCopyright secured by Digiprove © 2011-2015 Dean Cole

Share This Post:

FacebooktwitterredditpinterestlinkedintumblrmailFacebooktwitterredditpinterestlinkedintumblrmail

Follow Dean:

FacebooktwitterlinkedinrssinstagramFacebooktwitterlinkedinrssinstagram

SECTOR 64: Writing Progress Update

Follow Dean:

FacebooktwitterlinkedinrssinstagramFacebooktwitterlinkedinrssinstagram

Click to Visit The Book's Smashwords.com Page

Many of you have asked when the next part of Sector 64 will arrive, so here’s a quick writing progress report.

The first and second drafts of book two’s beginning, middle, and ending are complete, but there’s a hitch. I am working with a professional editor recommended to me by my Facebook friend, and very successful author, Scott Nicholson. Based on my editor’s inputs, I am wrapping up an extensive rewrite of book one, SECTOR 64: Coup de Main, which has more than doubled its length. Coup de Main’s outcome remains unchanged. However, I created a separate storyline for Captain Sandra Fitzpatrick. While she is a major character in book two, she played a minimal role in book one. To balance her side of the tale, and to give the reader another perspective on the story’s other characters, I’ve thrown one of the attacking alien ships at Sandy and the West Coast.

While the addition of Captain Fitzpatrick’s storyline has allowed me to seamlessly tie book one in with the events of book two, it also afforded me the opportunity to give the story’s other characters more depth. Sandy’s experiences also give the reader a clearer picture of the apocalypse the aliens visit upon us. While these changes do give the story more depth, I haven’t added fluff. The additions are full of raw action, intense scenery, and heart wrenching emotions.

At fifty-two thousand words, the original SECTOR 64: Coup de Main was more novella than novel. The new story’s beefy hundred ten thousand words bring it to the industry’s standard length for a science fiction novel. Considering this, I will publish the revised story as an epic new novel based on the novella, Sector 64: Coup de Main. Since many of you already purchased book one, and waited a significant amount of time for part two, I plan to announce a twenty-four hour period in which the yet to be named book one will be available for free on Amazon. For those of you who’d rather only read the added parts of the story, I will release a free novella that splits Sandy’s experiences out from the main tale.

All that having been said, I’m still at least a couple of months away from completion of book one. Much depends on my editor’s timetable as well as my own work schedule.

Thanks for your patience. In my ever so humble opinion, it’ll be worth the wait.

Digiprove sealCopyright secured by Digiprove © 2013 Dean Cole

Share This Post:

FacebooktwitterredditpinterestlinkedintumblrmailFacebooktwitterredditpinterestlinkedintumblrmail

Follow Dean:

FacebooktwitterlinkedinrssinstagramFacebooktwitterlinkedinrssinstagram

Overpopulation and the New Space Age

Follow Dean:

FacebooktwitterlinkedinrssinstagramFacebooktwitterlinkedinrssinstagram

As popularly depicted in several recent fiction offerings, we face a coming crisis. Over the last several decades, we’ve added a billion people to the world’s population every twelve years. Considering our economy, stock markets, and corporate valuations are growth based, this is great news for our retirement nest eggs. However, at some point in the next hundred years, the irresistible force of growth will smack into the immovable wall of earth’s finite resources and real estate.

Dan Brown’s new present-day thriller, Inferno, revolves around a mad scientist’s deranged solution for overpopulation. Matt Damon’s Elysium portrays a future where the ‘Have-Not’s are left to struggle in the squalor of a dystopic overpopulated world while the ‘Have’s take to living in a utopian orbital Halo-like ring world.

While Inferno’s fictional mad-scientist assumes additional resources will not avail themselves in time to prevent catastrophe, Elysium envisions growth’s substantial economic force leading to off world development. I believe the latter is the likely outcome.

In simplest terms, a reduction in growth creates a recession while a contraction generates a depression. We all suffer during those economic downturns. The stagnation of permanent zero growth would create economic chaos. Elysium’s dystopic vision not withstanding, when the forces of continued growth collide with earth’s limited resources, I believe it will be in our children’s (or their children’s) best interest to look to the stars.

It will also be in the corporate world’s best interest. More than any other factor, I believe the forces of capitalism will take us to the stars. It won’t happen tomorrow, next year, or even in the next several decades. However, at some point in the next century, the negative inflationary forces of improving technology and the need to continue growth will render large-scale space habitation an affordable option, propelling us across the solar system and eventually to the stars.

It won’t happen overnight. Barring a huge leap in technology, or the discovery of new physics that open paths to the stars, we won’t leap directly from our current forays into low earth orbit to interstellar travel. However, as the Samoans populated the Pacific’s scattered islands, humanity will likely spend the next thousand years spreading about the solar system. Through terraforming the inner planets or deploying Elysium style ring worlds, or both, our growth will continue until we’ve completely tapped the solar system’s resources. At that point, we’ll truly reach for the stars.

 

While vast, the Sol system’s resources are finite. Knowing that, we will have long ago identified nearby star systems ripe for human immigration. We already possess the ability to detect the atmosphere of nearby extra solar planets. Hubble recently detected the blue atmosphere of a gas giant orbiting one of our neighbors. In the coming decades, we will almost certainly gain the ability to directly observe some of our galaxy’s 100 billion earth-like planets.

While most, if not all of these events, will take place after we’ve moved on, our current outer space efforts are allowing us a glimpse of the universe our descendants may inherit when our socioeconomic model gets caught between a rock and a hard place.

Digiprove sealCopyright secured by Digiprove © 2013-2017 Dean Cole

Share This Post:

FacebooktwitterredditpinterestlinkedintumblrmailFacebooktwitterredditpinterestlinkedintumblrmail

Follow Dean:

FacebooktwitterlinkedinrssinstagramFacebooktwitterlinkedinrssinstagram

Will We Find ET in the Next 20 Years?

Follow Dean:

FacebooktwitterlinkedinrssinstagramFacebooktwitterlinkedinrssinstagram

In a Popular Science article, SETI director Seth Shostak said he believes we’ll detect alien life in the next twenty years. He listed a few ways in which this may come about. Primarily, he believes that SETI’s improving technology and its anticipated ability to search a million star systems over the next twenty years provides the most likely avenue for success.

He also touched on the idea that an alien race might detect the radio signals we’ve been emitting for decades and send a reply. Minimizing the possibility, he pointed out that only a few tens of thousands of stars have been exposed to our transmissions.

If one employs conservative/pessimistic numbers in the Drake Equation, then life is probably too rare and scattered to expect a reply anytime in the next several thousand years. However, if you plug slightly more optimistic values into the equation, you see a galaxy teaming with life.

This later scenario presents exciting possibilities and is an area that warrants further consideration.

Given the relatively slow speed of light (relative to the size of the galaxy) only a tiny fraction of the Milky Way may know we exist. Arguably the most powerful unnatural radio signals humanity ever sent out were our above ground nuclear detonations. Restricted to 186,000 miles per second, that energy has blazed across the galaxy and covered a whopping 66 light-year radius in the intervening 66 years. That’s a bubble of information roughly 122 light-years across.

Big huh?

Not really, it’s only 3/100,000 of 1 % (0.000003%) of the galaxy.

Difficult to visualize? Imagine you shrunk the galaxy down to the volume of the Superdome. Now imagine you’re up in the nosebleed section. At that scale, picture a four-foot-wide beach ball at mid-field. That sphere, a few centimeters over a meter, would represent the 122 light-year bubble of stars exposed to the energy waves emitted from the planet in 1945. It’s unlikely anything outside of that beach ball even knows we exist.

Our galaxy is not as boxy as a stadium. The Superdome’s interior volume is roughly as tall as it is wide. At 100,000 light-years across and only 1,000 light-years thick, the width-to-height ratio of our galaxy is 100:1  Now picture that four-foot sphere from a mile away instead of the upper-deck. And remember that if you’re not in that bubble, all you hear from its center point is cosmic white noise.

Knowing how small the portion of the galaxy is that may know of our existence, consider this: every day that sphere’s radius grows, its surface grows exponentially. In other words, the potential pool of star systems learning of our existence is growing daily, and at an ever-increasing rate.

Complicating the issue is the time a reply would take to reach us. If a civilization decides to beam an instant reply, it will take just as long for us to receive it as our signal took to get to them.

What if 33 years ago—back when that bubble was the size of a basketball—a relatively advanced civilization in our galactic backyard received the signal and blasted a return message our way? We’ll receive it thirty-three years later (today). Therefore, any instant replies beamed in the last 32+ years are still en route.

And that is only if they decide to reply immediately. Considering the signal they received was a nuclear detonation, they may want to listen for a while. After a few decades of I Love Lucy, Gilligan’s Island, Cheers, Seinfeld, and Lost, they decide, ‘what-the-hell let’s say hello to our wacky neighbors.’

Side note: I often muse over the idea that somewhere there’s an alien race agonizing over who shot JR as they painfully wait for the next season of Dallas to reach their planet. Who knows, there may even be a cultural niche of Elvis Presley fans on some remote rock (there’s some bad news heading their way circa 1976).

People and politicians often ask, ‘Why should we spend money listening for aliens? It’s not like they’ll balance the federal budget for us.’ That’s tantamount to a five-year-old saying, ‘Why should I go to school? There’s nothing they can teach me.’ Setting aside man’s innate curiosity and our desire to answer the burning questions—Are we alone? Is there anybody out there?—there are more practical reasons to search.

In regards to social and scientific development, we are assuredly babes in the galactic woods. Any data gathered from alien contact would probably be more enlightening than Pythagoras’ Theorem. Spanning decades, it would be an inefficient discussion, but likely, we would be the prime beneficiary of that interaction. Thus, a tiny-tiny-tiny-minuscule investment (relative to GDP) lands us invaluable knowledge.

In Carl Sagan’s Contact, aliens send us blueprints for a wormhole generator. But saving that, what if they merely said, ‘Hello, here’s the perfect mouse trap’ or ‘free energy and the cure to world hunger’?

 

Digiprove sealCopyright secured by Digiprove © 2011-2019 Dean Cole

Share This Post:

FacebooktwitterredditpinterestlinkedintumblrmailFacebooktwitterredditpinterestlinkedintumblrmail

Follow Dean:

FacebooktwitterlinkedinrssinstagramFacebooktwitterlinkedinrssinstagram

Underground Hangar Entrance

Follow Dean:

FacebooktwitterlinkedinrssinstagramFacebooktwitterlinkedinrssinstagram

Today’s volume of totally useless trivia: As many of you who read my book already know an underground hangar entrance at Southern Nevada’s Area 51 is the setting for two key scenes in my Amazon Top Rated novel SECTOR 64: Coup de Main.

What you may not know is I based that hangar’s location and description on a feature I saw on Google Earth’s images of the secretive Air Force facility adjacent to Groom Lake.  While researching the novel I did an in depth visual scan of the airfield. If you look at the base’s layout you’ll notice a not inconsequential distance lies between the hangar facilities and the runway complex. I reasoned that if you had a vehicle who’s very appearance would stand out you’d want a shorter path to the runway complex.

During my search I found the feature pictured above. While it may only be a jet-blast shield, its position seemed out of place and inconvenient for that purpose. Usually jet-blast shields are positioned to protect roads and structures from said jet blast. Also, the dirt behind/above it appears groomed as though work had been done there. Look closely and you’ll see parallel dark lines leading into the feature’s center.

I created a Google Earth Placemark for it. Click here to open a Google Map centered on the feature.

What do you think?

Digiprove sealCopyright secured by Digiprove © 2011-2014 Dean Cole

Share This Post:

FacebooktwitterredditpinterestlinkedintumblrmailFacebooktwitterredditpinterestlinkedintumblrmail

Follow Dean:

FacebooktwitterlinkedinrssinstagramFacebooktwitterlinkedinrssinstagram